Stochastic representations of derivatives of solutions of one dimensional parabolic variational inequalities with Neumann boundary conditions
نویسندگان
چکیده
In this paper we explicit the derivative of the flows of one dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions. Key-words: Reflected backward stochastic differential equations, semilinear parabolic partial differential equations and parabolic variational inequalities, localization error. ∗ ENSAE-Sénégal, BP 45512 Dakar Fann, Dakar Sénégal. in ria -0 03 81 85 4, v er si on 4 20 J an 2 01 0 Représentations stochastiques de dérivées de solutions d’inégalités variationnelles paraboliques en dimension un avec conditions de Neumann aux bords Résumé : Dans cet article, nous explicitons la dérivée du flot d’un processus de diffusion réfléchi. Nous obtenons des représentations stochastiques des dérivées des solutions de viscosité d’équations aux dérivées partielles paraboliques semi-linéaires. Nous en déduisons des représentations stochastiques des dérivées des solutions de viscosité d’inégalités variationnelles paraboliques avec condition au bord de Neumann. Mots-clés : Équations différentielles stochastiques rétrogrades réfléchies, équations semilinéaires paraboliques, inégalités variationnelles paraboliques, erreur de localisation. in ria -0 03 81 85 4, v er si on 4 20 J an 2 01 0
منابع مشابه
Strong convergence for variational inequalities and equilibrium problems and representations
We introduce an implicit method for nding a common element of the set of solutions of systems of equilibrium problems and the set of common xed points of a sequence of nonexpansive mappings and a representation of nonexpansive mappings. Then we prove the strong convergence of the proposed implicit schemes to the unique solution of a variational inequality, which is the optimality condition for ...
متن کاملNonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملVariational inequalities in Hilbert spaces with measures and optimal stopping
We study the existence theory for parabolic variational inequalities in weighted L spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L setting allows us to cover some singular cases...
متن کامل